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Phase equilibria in the Ag2/3Cdl/3-Te system 
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The T-X phase diagram of the polythermal Ag2/3Cdl/3-Te section in the Ag-Cd-Te system has 
been determined. Using X-ray diffraction, differential thermal and metallographic analyses, as well 
as microhardness and density measurements, 23 phase fields have been found, 8 of which were 
monophasic. The phase diagram is characterized by two non-variant peritectic and one 
peritectoidal equilibria. Two intermediate phases have been established: A (at 55 at % Te) with 
several polymorphic transitions, and B (at 25 at % Te). 

1. Introduction 
Investigation of complex systems containing semicon- 
ductors with different properties, for example AgzTe 
(a narrow-gap type) and CdTe (a wide-gap type), 
allows new phases to be found with interesting be- 
haviour suitable for applications [1]. The ternary 
Ag-Cd-Te system has been studied along the Ag Te, 
Ag Cd and Cd-Te sections [2]. In order to establish 
the physico-chemical interactions in this system we 
have also studied the AgzTe-CdTe [3], Ag CdTe [4] 
and Cd Ag2Te [5] sections. They are characterized 
by intermediate phases with constant or variable com- 
position, as well as limited solid solutions on the basis 
of Ag, Cd, AgzTe and CdTe. The present work is 
a continuation of these investigations and concerned 
the phase equilibria along the Ag2/3 Cdl/3-Te section. 
This particular section was chosen after analysis of the 
previous results [3-5]. 

2. Experimental procedure 
The Ag2/3Cdl/3 phase and the (Ag2/aCdl/3)10o-xTe~ 
(0 < x < 100) samples were synthesized by heating the 
elements (purity 99.99%) inside evacuated and sealed 
quartz ampoules in a rocking furnace. The melt was 
heated up to 1000 ~ with vibrational stirring for 3 h 
and cooled to room temperature. The phase diagram 
was specified by a complex application of different 
methods. To identify the phases, X-ray diffraction 
analysis was carried out using a TUR-M61 diffrac- 
tometer (CuK~ radiation with a nickel filter) and the 
phase transition temperatures were determined by dif- 
ferential thermal analysis (DTA). The microstructure 
was studied by the metallographic method. To achieve 
better development of the phases, the following solu- 
tions were chosen: for Agz/3Cdl/a-rich samples, 
N H 4 O H : H z O z : H 2 0  = 1:1:1; t ~ = 30~ z = 30s; 
for tellurium-rich ones, ( H F : H N O 3 : C H 3 C O O H  
= 3:5:6; t ~ = 25 ~ z = 20 s). We did not succeed in 
developing microstructure of the compositions in the 

range 50 75 at % Te. The density, d, was measured by 
a picnometric technique in toluene, and the micro- 
hardness, Iris, using a Vickers microindentor [3-5]. 

3. Results 
The X-ray diffraction data of the system studied are 
presented in Fig. 1 as a schematic diagram, and the 
phase transitions temperatures are given in Table I. 
For the (Agz/3Cdl/3)4sTe55 composition new lines 
appeared, which indicates formation of a new A- 
phase. Shift of these lines in the interval 50-60 at % Te 
was not observed, i.e. the range of homogeneity was 
below _+ 5% compared to the composition of the 
A-phase. Tellurium lines exist in the interval 
65 100 at % Te and Agz/3Cdl/3 lines at 0 30 at % Te. 
This supposes the presence of two phases at room 
temperature: (Ag2/3Cdl/3 + A) and (Te + A). 

The microhardness studies show tha t /4 ,  varies lin- 
early in the intervals 0-3 and 96-100 at % Te, indicat- 
ing the presence of limited solid solutions based on 
Agz/3Cdl/3 and Te, respectively (Fig. 2). In the range 
52 58 at % Te, only the A-phase exists, while in the 
ranges 5-50 and 60-90 at % Te, (Ag2/3 Cdt/3 + A) and 
(A + Te) exist, respectively. This conclusion is con- 
firmed by the two established values of/4~ in each of 
the above concentration intervals. 

The character of variation in density in the ranges 
0 < x _< 5 and 95 < x _< 100 gives proof of the exist- 
ence of limited solid solutions based on Agz/3Cdl/3 
and Te, while in the ranges 5 < x < 55 and 55 < x 
<_ 95 it indicates the presence of two phases (Fig. 3). 

4. Discussion 
The T-X phase diagram of the polythermal 
Agz/3Cdl/3-Te section in the ternary Ag-Cd Te sys- 
tem was determined on the basis of X-ray diffraction, 
differential thermal and metallographic analyses and 
measurement of the microhardness and density. It is 
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characterized by 23 phase fields, 8 of which are mono- 
phasic (Fig. 4). 

Two non-variant peritectic equilibria, at 38 at % Te 
(with a peritectic point at 890 + 10 ~ and at 95 at % 
Te (with a peritectic point at 450 _+ 10 ~ respect- 
ively, as well as one peritectoidal equilibrium at 
25 at % Te (with a peritectoidal point at 530 • 10 ~ 
have been established. Two intermediate phases were 
found, A-phase (at 55 at % Te), formed by the interac- 
tion of the limited solid solutions based on Age/3 Cdt/3 
and Te, and B-phase (at 25 at % Te), formed by the 
peritectic reaction between the A-phase and the lim- 
ited solid solution based on Ag2/sCd~/3 (at 
530 4-_ 10~ 
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Figure I S c h e m a t i c  d i a g r a m  o f  the  X- ray  d i f f r a c t i on  lines.  

The A-phase exists from room temperature to 
980 +_ 10 ~ (at which it melts congruently), and the 
B-phase in the range 305-530 ~ 

The A-phase undergoes several polymorphic 
transitions at different temperatures, depending on the 
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Figure 2 C o m p o s i t i o n a l  d e p e n d e n c e  o f  the  m i c r o h a r d n e s s .  
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Figure 3 C o m p o s i t i o n a l  d e p e n d e n c e  o f  the  dens i ty ,  

100 

T A B L E  I P h a s e  t r a n s i t i o n  t e m p e r a t u r e s  o f  t he  A g 2 / s C d l  a - T e  s y s t e m  

Te  (at %)  T h e r m a l  effects (~ 

1 0 . . . .  

2 5 - - 380 - - 

3 10 - 305 - - 530 

4 15 150 - - - 

5 20 150 . . . .  

6 25 150 305 - - 530 

7 30 145 305 335 - 530 

8 40 150 - - - 535 

9 45 150 . . . .  535 

10 50 - 3 t 0  330 - 

11 55 150 - 335 - - 

12 60 120 - 245 - 485 

13 70 125 - 245 - 485 

14 80 130 - 245 450 - 

15 85 125 - 235 450 - 

16 90 - - 230 455 490  

17 95 - - 235 455 - 

18 100 . . . . .  
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Figure 4 Phase diagram of the Ag2/3Cdl/3-Te system: (I) liquid, (II) 
liquid + 8 - A, (III) liquid + a - Agz/3Cdl/3, (IV) g - Agz/3Cdl/3 
+ 8 - A ,  (V) 8 - A ,  (VI) 8 - A + l i q u i d ,  (VII) s - A g 2 / 3 C d l / 3  

(solid solution based on Agz/3Cdu3 ), (VIII) B + 8 - A ,  (IX) 
8 - Ag2/3Cdl/3 + B, (X) intermediate B-phase, (XI) B + 3' - A, 
(XII) y - A, (XIII) y - A + liquid, (XIV) y - A + 1< - Te, (XV) 
K - Te + liquid, (XVI) ~c - Te (solid solution based on Te), (XVII) 

- A g z / 3 C d l / a + [ 3  A, (XVIII) B + [ 3 - A ,  (XIX) [ 3 - A ,  (XX) 
[ 3 - A + K - T e ,  (XXI) g - A g 2 / 3 C d u 3 + ~  A, (XXII) ~ - A ,  
(XXIII) ~ -  A + ~: Te. 

composition, x. The transition temperatures decrease 
at the point of deviation from the stoichiometric com- 
position with increasing tellurium content. The oppo- 
site tendency is observed with decreasing tellurium 

content. The temperature intervals, in which the modi- 
fications belonging to the A-phase exist, are ~-A from 
room temperature to 120-150~ [3-A from 
120-150~ to 240-330~ 5' A from 240-330~ to 
480-500 ~ and 8-A from"480 500 ~ to 980 ~ 

The homogeneity region of the A-phase expands 
with increasing temperature and reaches its largest 
size at about 800 ~ for 49-61 at % Te. This is also 
confirmed by the slight endothermal effects on the 
DTA curves of the compositions containing 50 and 
60 at % Te. 

We did not succeed in "freezing" the B-phase nor in 
determining its homogeneity region, nor in obtaining 
information about the structure. 
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